Overcoming platinum resistance in preclinical models of ovarian cancer using the neddylation inhibitor MLN4924.
نویسندگان
چکیده
The nearly ubiquitous development of chemoresistant disease remains a major obstacle against improving outcomes for patients with ovarian cancer. In this investigation, we evaluated the preclinical activity of MLN4924, an investigational inhibitor of the NEDD8-activating enzyme, in ovarian cancer cells. Efficacy of MLN4924 both alone and in combination with platinum was assessed. Overall, single-agent MLN4924 exhibited moderate activity in ovarian cancer cell lines. However, the combination of MLN4924 with cisplatin or carboplatin produced synergistic effects in SKOV3 and ES2 cells, as well as in primary ovarian cancer cell lines established from high-grade serous, clear cell, and serous borderline ovarian tumors. The efficacy of cisplatin plus MLN4924 was also evident in several in vitro models of platinum-resistant ovarian cancer. Mechanistically, the combination of cisplatin and MLN4924 was not associated with DNA re-replication, altered platinum-DNA adduct formation, abrogation of FANCD2 monoubiquitination, or CHK1 phosphorylation. An siRNA screen was used to investigate the contribution of each member of the cullin RING ligase (CRL) family of E3 ubiquitin ligases, the best-characterized downstream mediators of MLN4924's biologic effects. Cisplatin-induced cytotoxicity was augmented by depletion of CUL3, and antagonized by siCUL1 in both ES2 and SKOV3 ovarian cancer cells. This investigation identifies inhibition of neddylation as a novel mechanism for overcoming platinum resistance in vitro, and provides a strong rationale for clinical investigations of platinum and MLN4924 combinations in ovarian cancer.
منابع مشابه
Small Molecule Therapeutics Overcoming Platinum Resistance in Preclinical Models of Ovarian Cancer Using the Neddylation Inhibitor MLN4924
The nearly ubiquitous development of chemoresistant disease remains a major obstacle against improving outcomes for patients with ovarian cancer. In this investigation, we evaluated the preclinical activity of MLN4924, an investigational inhibitor of the NEDD8-activating enzyme, in ovarian cancer cells. Efficacy of MLN4924 both alone and in combination with platinum was assessed. Overall, singl...
متن کاملCancer Therapy: Preclinical Disrupting Protein NEDDylation with MLN4924 Is a Novel Strategy to Target Cisplatin Resistance in Ovarian Cancer
Purpose: Ovarian cancer has the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure and novel therapeutic strategies are urgently needed. MLN4924 is a NEDDylation inhibitor currently under investigation in multiple phase I studies. We investigated its anticancer activity in cisplatin-sensitive and -resistant ovarian cancer models...
متن کاملDisrupting protein NEDDylation with MLN4924 is a novel strategy to target cisplatin resistance in ovarian cancer.
PURPOSE Ovarian cancer has the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure and novel therapeutic strategies are urgently needed. MLN4924 is a NEDDylation inhibitor currently under investigation in multiple phase I studies. We investigated its anticancer activity in cisplatin-sensitive and -resistant ovarian cancer models....
متن کاملSynergistic inhibition of autophagy and neddylation pathways as a novel therapeutic approach for targeting liver cancer
Liver cancer is the second-most frequent cause of cancer death in the world and is highly treatment resistant. We reported previously that inhibition of neddylation pathway with specific NAE inhibitor MLN4924, suppressed the malignant phenotypes of liver cancer. However, during the process, MLN4924 induces pro-survival autophagy as a mechanism of drug resistance. Here, we report that blockage o...
متن کاملTargeting the Neddylation Pathway to Suppress the Growth of Prostate Cancer Cells: Therapeutic Implication for the Men's Cancer
The neddylation pathway has been recognized as an attractive anticancer target in several malignancies, and its selective inhibitor, MLN4924, has recently advanced to clinical development. However, the anticancer effect of this compound against prostate cancer has not been well investigated. In this study, we demonstrated that the neddylation pathway was functional and targetable in prostate ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 12 10 شماره
صفحات -
تاریخ انتشار 2013